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C. A. Wagner

Geodynamics Branch

Trajectory Analysis and Geodynamics Division

ABSTRACT

An attempt has been made to find a secular drift in X 2,2, or the phase of

the low order and degree portion of the geogravity field. This portion may be

associated with mass anomalies near the core-mantle boundary. From the geo-

magnetic evidence, such anomalies might have westward drifts on the order of

0.5 degrees/year. Tracking data on 8 synchronous satellites over a period of

6 years were examined for residual accelerations which might be explained by a

drift of the 2,2 gravity phase angle. No conclusive movement of X2, 2was de-

tected. But a measured upper bound on the drift of less than 0.05 degrees/year

is still compatible with possible slow moving irregularities in the region of the

core-mantle boundary.
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DOES x2, 2 VARY?

INTRODUCTION

Until fairly recently, the gravitational field associated with the earth's mass

has been assumed to be fixed. It is obvious however, that there must be small

but important changes of the field, in time, due to a variety of causes.

Since 1965, measurements of satellite orbit deviations have confirmed the

existence of the solar tide induced in the earth's body. [l] [2] These observations

have generally agreed with previous assumptions about the overall elasticity of

the earth. In addition, recent satellite orbit studies have revealed changes in

the earth's oblateness associated with known rotation rate changes and seasonal

effects perhaps due to solar heating. [ 3 ] [4]

But so far there have been no unambiguous measurements of field changes

due to the dynamics of the earth's own mass redistribution. The well known

secular variations of the magnetic field (on the order of 0.5°/yr.), the almost

certain existence of continental drift as well as the more speculative internal

convection currents in the mantle, all imply significant changes in the 'fixed'

gravitational field.[ 5] Some of these changes (if they exist) are now capable of

being measured by satellites.

The only known ground based observations of geogravity changes, from long

term sea level monitoring, are inconclusive.[ 5 ] The data itself (determination of

mean sea level from tidal records) is highly variable. The estimated trends

yield formal standard errors an order of magnitude greater than the estimations
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themselves. However, predicted sea level trends on the basis of a 0.2°/yr.

westward drift of only a small fraction (.20%) of the low degree and order har-

monics are at the level of accuracy of the observations (2 to 3 cm/yr.). The

implication is that no more than a small fraction of the low order anomalies

are associated with the core or the core-mantle boundary. However, the in-

terpretation of the observations is ambiguous since changes in sea level may

be due to a number of causes not associated with gravity drift. For example,

continental plate motions (vertical and horizontal) on the earth's surface are

now thought to be of the order of 0.1 to 10 cm/yr. [51] [6]

The use of satellite tracking data over long periods of time offers the pos-

sibility of monitoring these gravity changes unambiguously.

THE EXPERIMENT MODEL AND DATA ANALYSIS

The Model

In theory the determination of gravity changes by satellite tracking could be

made from any well and long observed orbit. In this study the record of the

synchronous (24 hour) orbits were examined because they have almost ideal

geometric and dynamic properties for monitoring changes in the low order field.

Geometrically the orbits are nearly geostationary. For long periods of time

they have remained over about the same geographic longitudes. In principal,

such an orbit is in effect a gravity meter set up at a single longitude for long

periods of time. The determination of the anomalous acceleration by tracking
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spacecraft in these orbits gives repetitive 'gravity' measurements at the same

locations; the ideal experimental situation for monitoring long term changes.

Dynamically, the synchronous orbits are ideal because, being stationary,

they are extremely sensitive to the very small anomalous accelerations from

the gravity field. On stationary orbits these accelerations build up cumulatively.

Being amplified, they are easily detected and therefore well measured. The

additional benefit of the high synchronous orbit is that it is sensitive to only the

lowest degree and order gravity anomalies. These are the only anomalies

which, because of their long wavelengths, might originate near the core-mantle

boundary in spite of the great overburden pressures. [5]

Considering the geogravity field developed into an infinite series of spherical

harmonics, the geostationary orbits are especially sensitive to (or resonant with)

the longitude dependent terms. In fact all but about 15% of the resonant acceler-

ation on these satellites is accounted for by the (2,2) harmonic term.[ 7] The

experiment in this study was to try and detect a steady shift or drift of the (2,2)

harmonic, in particular it's phase angle (X 2 2 ) ' examining 6 years of tracking

data. The amplitude of the (2,2) harmonic (J2 2) might also be considered

variable. But it's variability is more difficult to justify physically since it's

change implies stress changes inside the earth. Significant steady variation in

2, 2, on the other hand, would imply no stress changes but merely lateral flow

of anomalies in response to existing stresses (for example, at the core mantle

boundary).
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This experiment was designed with two objectives:

1. To measure directly any long term acceleration changes on geostationary

orbits in the same longitude region and

2. To measure indirectly the same long term acceleration changes over

many longitudes with respect to a drifting X 2 2 model.

Consider the dominant resonant acceleration in longitude on a 24 hour

orbit: [8]

A = (A2,
2
) sin 2(i - X2, 2 ) radians/day 2 , (1)

where;

A2,2 = 12772 J2,2 (1 + cos I)2/4]

a is the orbit's semimajor axis in earth radii, I is it's inclination and J 2, 2 and

2,2 are related to the conventional unnormalized gravity coefficients [9]

(C2, 2and S2,2) by:

C2 , 2 J 2 2 cos 2 2, 2

and

S2,2 = J 2 , 2 sin 2 2,2.

The longitude X is defined as M + co + N - 0e, in terms of the conventional

Kepler elements; mean anomaly, argument of perigee, right ascension of the

ascending node and the Greenwich hour angle. For the 24 hour circular orbit X

is the actual mean geographic longitude of the satellite. If we allow only k2, 2 to
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change in time, the velocity of this change can be found from the velocity of the

change in K. Namely, differentiating (1) with respect to time:

dX d2
dt = -2A 2 [cos 2(k - X2, 2 )] d 2
dt dt

or

dX 2 2 dX sec 2 ( - 2 ) (2)
dt dt 2 A2 ,2

Stated another way, if AX 2, 2 and AX are small changes in X 2, 2 and X from an

arbitrary time when the phase angle was K 2,2 and the acceleration was X, then

(2) implies that:

AhX2, sec 2 (X-X2,2). (3)
2 A 2 2

From equation (3) we can convert measurements of residual accelerations to

measurements of phase changes. This inferred measurement of phase change

is the basis of the experiment.

Data Analysis

In the first experiment (the repetitive measurement of the acceleration at

about the same longitude), the data consists of 28 sets of mean Kepler elements

for Intelsat 2F3 (as determined by the Communications Satellite Corporation

between 1967 and 1971). These are shown in Table 1. The mean longitudes

show that the satellite was within only a. few degrees of 110 west during this

time. The elements were determined by COMSAT from radar range, elevation
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and azimuth data over periods of about a month, taken from tracking stations in

Maine and Europe. They are separated into 3 free drift arcs by station keeping

maneuvers performed about a year apart. Values of C2
2 and S2 2 were de-

termined from the accelerated drift in each arc by fitting the A data (essentially)

in each arc to numerical ephemerides generated by the Rapid Orbit Analysis and

Determination program (ROAD).[ ° ] The accelerated drifts themselves are shown

in Figure 1.

From the determined values of C2 2 and S2.2 in each arc, best determined

values of A were found for an orbit whose elements were the average of the

elements in the 3 arcs. The results of this measurement are given in Table 2.

Considering the first arc in time as the base measurement, residual accelerations

(Arc 2 and 3 values minus the Arc 1 value) were computed for the 2nd and 3rd arcs

of Intelsat 2F3. From these, referred phase changes were calculated from (3)

using a value of A 2 2 (I = 0° ) of 3 x 10-5 radians/day2 based on a J
2

,2 of

1.8 x 10- 5 , and a value of A
2 2 of -15°. This data is also listed in Table 2.

Evidently, from the overlap of the acceleration residuals themselves, there is

no clear secular drift at this longitude over the 4 year period.

To test the precision of the hypothesis that 22 does have a simple linear

drift in time, we can fit the data in Table 2 to the function:

2, 2 = Xl + X2t, (4)
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where t is the time from some convenient reference. The parameter X2 in this

function is the drift rate 2, 2

A weighted least squares solution for 2,2 with the data in Table 2 weighted

according to their formal standard deviations is also given in Table 2. The

judgement above is confirmed that no clear secular trend is seen in this data.

But the observations are limited in time span and longitude. As a result, the

precision and reliability of this test is not sufficient to decide whether or not low

order and degree geogravity drift exists worldwide at the same level as geo-

magnetic drift (-0.5°/yr).

To broaden the scope of this measurement, and to make it more precise, 12

additional arcs of 24 hour satellites were examined with a worldwide distribution

of longitudes and extending back to 1965. (See Table 3.) The basic data here

(mean Kepler elements) are the same kind as in the first (direct) experiment.[l l] , [121

In this indirect experiment, C2,2 and S2,2 were best fitted (by ROAD) to the

mean elements in all these arcs and the mean longitude residuals (observed

minus computed values) were further analyzed for acceleration trends. The

fixed geopotential in this determination included harmonics to (5,5) found from

non-synchronous satellites. This analysis consisted of fitting quadratic poly-

nomials (inthetime)tothe residuals. The MA quantities in Table 3 are the residual

accelerations from this analysis. The 2A 2'measurements' are reductions of the

AX's according to (3). Once again the A 2, 2 'measurements' in the 15 arcs were

tested for a linear time drift according to the model of (4). The results of the global
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drift measurements are shown in Figure 2 and compared to a westward drift line

of 0.5°/yr. through this time period.

Clearly if any low degree and order geogravity drift occurs, it is at least an

order of magnitude slower than the equivalent wavelengths of geomagnetic drift.

While the previous test was quite convincing, by covering more than two longi-

tude regions the acceleration residuals were subject to systematic errors from

poorly determined resonant terms beyond the 2nd order. Therefore, in an attempt

to sharpen the result, a more limited data set was chosen of the best arcs in only

the two regions 165 ° - 1950 east, and 100 - 150 west (see Table 4).

This final test, while conceptually cleaner than the last, gave a somewhat

poorer estimate because the time span was slightly less and fewer arcs were

used. In addition, the 'best' (most precisely determined) arcs were not in this

limited set. The results; residual accelerations, residual phase shifts, and

estimated phase drift rate in this experiment are given in Table 4 and summar-

ized in Figure 3.
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SUMMARY AND CONCLUSIONS

An examination of mean elements in 15 arcs of eight 24-hour satellites

over a 6 year period shows no significant geopotential changes. In particular,

the data was tested for a possible drift of k2 2' the phase angle of the 2nd order

tesseral gravity harmonic. Over the 6 year period, the data was only compatible

with a westward drift more than an order of magnitude slower than the westward

drift of similar components of the geomagnetic field. However, the precision of

the data and the short time span was not sufficient to measure rates less than

about 0.02°/year.

It is possible that the earth's core drifts (or slips) westward with respect

to the mantle at about 0.50/yr. (as implied by the geomagnetic field drift). If so,

then this satellite result is only compatible with an origin for the lower order and

degree geogravity anomalies in the slower drifting portions of core-mantle boundary

or the mantle itself. In any case there is considerable doubt that any part of the

highly compressed lower mantle or viscous core can support even the mild shear

stresses implied by the low order geogravity anomalies.[ 13] These satellite

measurements are certainly compatible with this view also. They only definitely

rule out an origin for these anomalies in a significantly drifting core.
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Table 1: Mean Element Observations for Intelsat 2F3

INTELSAT 2F3-1
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Table 2: Results of Repeated Measurement of the Acceleration on Intelsat 2F3

Time Period: 39600 - 41100 MJD

Longitude Range: 345 ° - 353 ° East

Average Orbit Elements: a = 6.61 E.R., e = 0.004, I = 1 ° , X = 348.2° East

<A 2,2 >= +0.004 + 0.029 0/Yr.

14

Acceleration and Phase Measurements

Arc Mid Arc Longitude Ax AX 2, 2

(10.5 Rad./Day 2 ) D (°East) (10
-

Rad./Day2) (10 - 2 Rad.)

1 -0.015 + 0.010 39750 348.2 0.000 ± 0.010 0.00 + 0.17

2 -0.019 + 0.006 40500 348.2 -0.004 m 0.006 +0.07 ± 0.10

3 -0.020 ± 0.011 40900 348.2 -0.005 ± 0.011 +0.08 ± 0.18



Table 3: Results of Measurements of Residual Accelerations in 15 Arcs of 24-Hour Satellites

Mid
TAMid Ave rage Longitude Ave rage

Time Span ArcArc (MJD) Time Inclination Span Longitude A AX2, 2

(MJ) (MJD) (0) (° East) (° East) (10-5 Rad./Day 2 ) (10-2 Rad.)

Syncom 2,8 38815-38918 38850 32 65-68 66 -0.02310.025 -0.48 i 0.50

Syncom 3, 11 39075-39263 39150 0 165-172 168 +0.021±0.020 -0.35 ± 0.34

Syncom 3, 13 39376-39531 39450 1 159-161 160 +0.053±0.015 -0.88 i 0.25

Intelsat 2F3-1 39607-39905 39750 1 349-352 350 +0.008+0.010 -0.14 ± 0.17

Intelsat 2F4-1 40323-40608 40450 1 179-194 184 +0.002±0.010 -0.07 i 0.21

Early Bird 1 38897-39080 39000 0 324-332 331 +0.000±0.015 0.00 ± 0.28

Intelsat 2F4-2 40617-40782 40700 1 188-195 191 +0.000±0.005 0.00 i 0.14

ATS 3-2 40267-40337 40300 0 287-288 387 -0.003±0.002 -0.12 i 0.08

Intelsat 2F3-2 40406-40642 40500 1 346-349 348 +0.001±0.010 -0.02 ± 0.17

Skynet 1,5 41049-41069 41050 1 50 50 -0.015±0.003 -0.39 i 0.08

Skynet 1, 1 40652-40672 40650 2 39-40 39 -0.006 ±0.003 -0.32 i 0.16

Early Bird 2 39096-39219 39150 1 321-331 327 -0.006-0.004 +0.12 i 0.08

Intelsat 2F3-3 40650-41100 40900 1 345-348 347 +0.009±0.010 -0.18 ± 0.17

ATS 5-2 40742-41200 40950 1 255 255 +0.007±0.003 +0.10 i 0.05

Intelsat 2F4-3 40817-41065 40950 2 189-215 194 -0.008±0.004 +0.22 ± 0.13

< A 2,2 > = -0.002 ± 0.016 °/Yr.

I-A
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Table 4: Results of Measurements of Residual Accelerations

in Satellite Arcs in 2 Longitude Regions

Average
Arc A y2)0. 22,2 Mid Arc Time

Are-5 Rad./Da) A, Longitude(10- Rad./Day2 ) (10 -2 Rad.) (MJD) (East)

Syncom 3, 11 +0.008 + 0.020 +0.14 + 0.34 39150 168

Intelsat 2F4-2 -0.002 * 0.005 +0.06 ± 0.14 40700 191

Intelsat 2F4-3 -0.007 ± 0.004 +0.18 ± 0.13 40950 194

Intelsat 2F3-2 -0.003 ± 0.010 +0.05 ± 0.17 40500 348

Intelsat 2F3-3 0.000 ± 0.010 0.00 ± 0.17 40900 347

Intelsat 2F4-1 0.014 ± 0.010 -0.30 · 0.21 40450 184

Intelsat 2F3-1 -0.003 + 0.010 0.04 ± 0.17 39750 350

<;X2,2> = +0.010 · 0.027 "/Yr.
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Figure 1. Accelerated Drifts of Intelsat 2F3 Over a 4 Year Period
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